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Abstract. Dementia is a medical condition encompassing a broad spectrum of
cognitive impairments, including a progressive decline in cognitive, motor, and
memory skills. Although numerous types of dementia have been identified to
date, Alzheimer’s disease is still the most extensively studied due to its high
prevalence and impact on individuals and society. The Alzheimer’s Disease
Neuroimaging Initiative (ADNI)is a collaborative research effort dedicated to
studying Alzheimer’s Disease neuropathology. ADNI has collected clinical data
through different study phases, such as laboratory analysis, biomarkers, genetic
information, brain imaging, volumetric information, cognitive tests, and other
clinical measurements. This information allowed to conform a database that
has contributed to the development of multiple scientific studies and clinical
trials, including those that have implemented machine learning and deep learning
algorithms to classify cognitive impairment stages and the severity of dementia
symptoms. Stacked ensemble methods are an interesting alternative that fuses
the strengths of several classification base models. This approach has provided
flexible frameworks for combining multiple models, leveraging their strengths,
and thus making more accurate classifications and predictions. This paper reports
a stacking ensemble of classic machine-learning models to classify Alzheimer’s
disease, normal cognition, and mild cognitive impairment. The stacked ensemble
comprises three Gradient Boosting Machine, two Extreme Gradient Boosting
models, and two Distributed Random Forests that reached an overall accuracy
of 86.9% in the classification process.
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1 Introduction

Dementia, as a clinical term, encapsulates a broad spectrum of cognitive impairments
where an individual progressively deviates from their normative behavioural patterns to
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the extent that they can no longer accomplish tasks routinely expected from a person in
their respective age group [11]. This neurodegenerative disease manifests itself most
commonly as memory loss but can also come as motor function reduction, spatial
awareness decline, and general disorientation and confusion. As per recent studies, it
is estimated that around 50 million individuals globally are affected by dementia, a
number that showcases the threat of this global health concern [17].

The rising prevalence of dementia worldwide is predicted to escalate further in
the future, attributed primarily to the consistent increase in the average lifespan and
the consequent growth of the elderly population [12]. Numerous types of dementia
have been identified to date, each representing unique facets of neurodegenerative
pathologies. These include Vascular dementia, Lewy body dementia, Parkinson’s
disease, and Alzheimer’s disease (AD), each with distinct symptomatology and
progression patterns [10].

AD, the most prevalent neurodegenerative pathology, accounts for approximately 70
percent of all dementia occurrences. The alarming rate of its incidence, which is said
to double every 5 to 10 years, implies that people in age brackets of 65-69, 70-74,
75-79, 80-84 are at a continually increasing risk, with likelihoods of 0.6%, 1.0%, 2.0%,
3.3%, and 8.4%, respectively [5]. It is pertinent to mention that AD often does not
begin with severe symptoms. In many cases, the early stages manifest as Mild Cognitive
Impairment (MCI), a condition considered a transitional stage between the expected
cognitive decline of normal aging and the more serious decline of dementia.

Individuals with MCI often experience noticeable cognitive changes to the people
around them and to themselves, but not severe enough to interfere with their daily life or
independent function to a concerning point. Despite not all people with MCI developing
AD, a significant proportion do, with studies suggesting that MCI patients progress
to AD at a rate of approximately 10-15% per year. Therefore, the importance of the
MCI denomination lies in its strong correlation with the progression to AD, making
its early detection and study crucial for understanding, preventing, and treating this
neurodegenerative condition [14].

Several risk factors contributing to Alzheimer’s have been identified in scientific
literature, including a family history of dementia, a history of head trauma, certain
genetic factors, the presence of two X chromosomes, lower education levels, and
vascular disease. These factors, in turn, have led to the identification of several
biomarkers that have shown to produce accurate classification results when incorporated
into machine learning and deep learning algorithms [5].

These algorithms have been trained on clinical and imaging data to produce an
acceptable model capable of classifying AD stages or forecasting the progression from
MCI to AD. In the relevant literature, several examples of this can be found. For
instance, the work of Beltrán [2] used the ADNI database to predict the transition
from MCI to AD. To do so, several machine learning models were implemented,
with Random Forests (RF) and Gradient Boosting Machines (GBM) being the most
successful of them, achieving an AUC of 0.77 in the forecasting task. Similarly,
Dimitriadis [8] also used the ADNI database to create a new and unique four-class
AD-based problem. By integrating morphological MRI-based features such as cortical
thickness, subcortical volumes, and hippocampal subfields within a Random Forest
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framework, the study achieved a 61.9% classification performance in distinguishing
between four groups: Healthy Control, MCI, converted MCI, and AD. Doyle [9]
forecasted the development of AD using multivariate ordinal regression to model
the ordered brain deterioration from normal aging (CTL) to MCI to AD. Wang [16]
developed a hybrid machine learning system that combines multiple convolutional
neural networks and a linear support vector classifier. According to clinical evidence,
convolutional neural networks were used to automatically extract image features from
brain segments related to cognitive decline.

The linear support vector classifier then used the extracted image features and
non-image information to make the final predictions. Recently, stacked ensembles have
been successfully implemented in medical diagnostics and a variety of other fields.
Stacked ensemble methods have improved the predictive performance of a model by
combining the strengths of several base models and feeding their predictions into a
higher-level, secondary model (meta-learner) to produce the final prediction.

The primary purpose of this technique is to blend the capabilities of numerous
diverse models to mitigate individual model weaknesses, improve generalization, and
enhance the overall predictive accuracy [13]. For example, stacked ensemble models
have been utilized for neuropathologies to predict AD onset [1] by combining different
machine learning algorithms.

In this project, a novel methodology for classifying Alzheimer’s disease, normal
cognition, and mild cognitive impairment was proposed using a stacking ensemble
of classic machine learning models. This paper is structured as follows: Section 2
Methodology describes the database and the clinical data considered in the study,
the processing and feature selection of the data. The stacked ensemble model is also
reported in this section. Section 3 reports the performance and accuracy of the stacked
ensemble. Finally, the conclusions are outlined in the last section of the document.

2 Methodology

The data analysis and model training for this study were carried out on a
virtual computer with the following specifications: the operating system was a
Linux distribution, the virtual machine architecture was x86 64, the full platform
description was Linux-5.15.107+-x86 64-with-glibc2.31, the processor was an x86 64,
the total CPU count was 2, and the system was equipped with a total memory of
approximately 12.68 GB. Figure 1 depicts the general pipeline of the proposed stacking
ensemble algorithm.

2.1 Database

In this project, multiple datasets from the ADNI database [15] were considered.
The primary dataset of the study, the ADNIMERGE dataset encapsulates critical
information from various phases of the ADNI project (ADNI1, GO, 2, 3) and it
comprises 16,345 rows and 42 columns, capturing a broad spectrum of participants
information across different stages of the disease.
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Fig. 1. General pipeline of the proposed stacking ensemble algorithm.

However, this dataset has the disadvantage of having a significant amount of missing
data particularly in the ‘ABETA,’ ‘TAU,’ and ‘PTAU’ columns, with over 13,975
missing values each. In order to improve the dataset, an integration of the TOMM40
PolyT Variant Data and the Desikan Lab Polygenic Hazard Score (PHS) was made.
The TOMM40 dataset, consisting of 1,520 rows and five columns, provides a clean and
focused view of the TOMM40 gene. The PHS dataset, on the other hand, containing
757 rows and five columns, reveals minor data inconsistencies with 11 missing values
each in the ‘TOMM40 A1’ and ‘TOMM40 A2’ columns.

These columns potentially represent alleles of the TOMM40 gene, enhancing the
understanding of the genetic influence on Alzheimer’s disease progression. After this
process, the unified dataset encompassing approximately 2000 participants categorizes
individuals into three cognitive states: Normal cognition, Mild Cognitive Impairment
(MCI), and Alzheimer’s Disease (AD). This diverse dataset improved the external
validity and reliability of the machine learning models.

It is worth mentioning that a significant part of the study is centered around the
analysis of Mild Cognitive Impairment (MCI), a transitional stage between normal
cognitive aging and dementia, since the analysis of MCI helps identify the early stages
of cognitive decline, capturing the subtle yet significant shifts that a person undergoes
when they drift away from normal cognition.
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The features utilized in this study are categorized into five primary groups: genetic
data, protein data, radiopharmaceutical data, brain volumetric data, demographic data,
and cognitive assessment data.

2.2 Data Preprocessing

During the initial stages of data preprocessing, a significant amount of missing values
in the dataset was identified. This posed a significant problem, especially considering
the requirement for developing a classifier that is not reliant on incomplete or artificially
augmented data. Upon closer inspection, it was found that certain fields, such as ‘FDG,’
‘ABETA,’ ‘TAU,’ ‘PTAU,’ and, at certain stages of the ADNI dataset, the brain volume
data, contained fewer complete records compared to other variables.

For the data cleanup stage, which in part involved the elimination of rows
with missing data, the loss of two entire classes: ‘SMC’ and ‘EMCI,’ was
observed. Regarding genetic data, the ‘APOE4’ column was considered. This captures
information about the presence of the APOE4 allele, which has been associated with
an increased risk of Alzheimer’s disease. In the category of proteic data, the columns
‘ABETA,’ ‘TAU,’ and ‘PTAU’ were included. These columns contain information about
various Alzheimer-related proteins, which serve as biochemical markers for the disease.

For radiopharmaceutical data, the ‘FDG’ column was considered. Regarding
imaging data, the columns ’Ventricles,’ ‘Hippocampus,’ ‘WholeBrain,’ ‘Entorhinal,’
‘Fusiform,’ ‘MidTemp,’ and ‘ICV’ were selected. These columns contained volumetric
measurements of various brain regions and the overall intracranial volume. The
demographic data considered the columns: ‘AGE,’ ‘PTGENDER,’ ‘PTEDUCAT,’
‘PTETHCAT,’ ‘PTRACCAT,’ and ‘PTMARRY .’ Lastly, for cognitive assessment
data, the following columns were included: ‘CDRSB,’ ‘ADAS11’, ‘ADAS13’,
‘ADASQ4’, ‘MMSE,’ ‘RAVLT immediate,’ ‘RAVLT learning,’ ‘RA- VLT forgetting,’
‘RAV LT perc forgetting,’ ‘LDELTOTAL,’ ‘DIGITSCOR,’ ‘TRABSCOR,’ ‘FAQ.’ and
there were no experimental configurations discovered that could retain these two classes
without a severe hindrance on the model’s performance.

Another issue related to protein data and how it was stored in the CSV files was that
the three relevant columns ‘ABETA,’ ’TAU,’ and ‘PTAU’ had information written as a
string when concentrations exceeded or did not reach a certain value. The adjustments
performed were simply the swapping of specific string values to their closes numerical
representation. In detail, the process was done as follows:

1. The data associated with the ‘ABETA’ protein was transformed by replacing
any instances of values greater than 1700 and less than 200 with 1700 and
200, respectively.

2. Similarly, the ‘TAU’ protein data was adjusted by modifying the instances of values
above 1300 and below 80, with 1300 and 80, respectively.

3. Finally, the data associated with the ‘PTAU’ protein was updated by replacing
the occurrences of values exceeding 120 and falling below 8 with 120 and
8, respectively.
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2.3 Feature Selection

For the feature selection stage, the ‘SelectKBest’ function combined with the
‘mutual info classif’ method, both from Scikit-learn’s feature selection module were
used. ‘SelectKBest’ is a univariate feature selection method that identifies the ‘k’
highest scoring features. The ‘mutual info classif’ method is designed to compute the
Mutual Information (MI) between each feature and the target variable, in this case,
‘DX bl’. The mathematical formula [7] underpinning this method is as follows:

MI(X,Y ) =
∑
x

∑
y

p(x, y) log

(
p(x, y)

p(x) p(y)

)
. (1)

In this equation, X represents a feature, and Y symbolizes the target variable.
p(x, y) is the joint probability distribution function of X and Y, whereas p(x) and p(y)
are the marginal probability distribution functions of X and Y , respectively. Mutual
information is beneficial as it measures the dependency between the variables and only
returns a zero when two variables are found to be independent.

The relevance of each feature was determined by calculating Mutual Information
(MI), which indicated the strength of its relationship with the target variable. These
scores were then assessed, focusing especially on categorical and numerical features
with non-zero mutual information. This non-zero value signified a degree of correlation
with the target variable. This feature selection process allowed for a focus on
the most relevant attributes, thereby improving the precision and efficiency of the
predictive model.

2.4 Classification Model

The study implemented an ensemble model that utilized a meta learner algorithm based
on generalized linear models (GLM) with a logit transformation. The ensemble was
constructed using the following base models:

– GBM 4 Model (Gradient Boosting Machine):
– Trained with 48 trees, a maximum depth of 10, and a learning rate of 0.1.

– Utilized a multinomial distribution and employed a UniformAdaptive
histogram type.

– DRF 1 Model (Distributed Random Forest):
– Trained with 32 trees and a maximum depth of 20.

– Utilized a multinomial distribution and employed a UniformAdaptive
histogram type.

– XGBoost 3 Model (eXtreme Gradient Boosting.):
– Trained with 40 trees, a maximum depth of 5, and a learning rate of 0.3.

– Utilized a multinomial distribution and employed the exact tree method with a
depthwise grow policy.
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– GLM 1 Model (Generalized Linear Model):
– Trained using a multinomial family with coordinate descent as the solver.

– Employed lambda search with early stopping.

– XRT 1 Model (Extremely Randomized Trees, Treated as DRF):
– Trained with 26 trees and a maximum depth of 20.

– Utilized a multinomial distribution and employed a random histogram type.

XGBoost, short for ”eXtreme Gradient Boosting,” is an optimized implementation
of a Gradient Boosting Machine (GBM). XGBoost improves upon the classic GBM
framework by introducing regularization to avoid overfitting, as well as several system
optimizations to speed up and improve the model’s performance. In essence, the
XGBoost algorithm works by iteratively adding new models to the ensemble that predict
the errors of the previous models. The prediction [6] at each step is given by:

Fm(xi) = Fm−1(xi) + ⟨m(xi), (2)

where Fm(xi) is the predicted output after the mth model, Fm−1(xi) is the prediction
from the previous step, and ⟨m(xi) is the current model that’s added to improve the
prediction by predicting the residuals of the previous model. Distributed Random
Forest (DRF) models operate similarly to the standard Random Forest algorithm,
with variations in their configuration to ensure diversity among the predictions of
individual trees in the ensemble. A Random Forest or DRF model can be abstractly
represented [3] as:

Y =
1

n

n∑
i=1

Ti(X), (3)

where Y is the output variable, X is the vector of input variables, Ti(X) represents the
prediction of the i− th decision tree in the ensemble, and n is the total number of trees
in the ensemble. The final output of the stacked ensemble model is a weighted sum of
the individual model predictions and can be represented [4] as:

F (xi) =

M∑
m=1

wm Fm(xi), (4)

where, F (xi) is the final output, Fm(xi) is the output of the mth model, and wm is the
weight for the mth model. These weights are learned during training to optimize the
ensemble’s performance.

K-fold cross validation. Is a statistical method used for estimating the performance
of predictive models. This type of validation is mostly used when a model’s goal is
prediction, and one wants to estimate its accuracy with as little bias as possible. This
study employed a specific form of cross-validation called 5-fold cross-validation. In this
approach, the dataset was divided into five equal-sized folds, and then the predictive
model was trained and validated five times, with each iteration using a different fold for
validation while the remaining folds were used for training.
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Table 1. Feature importance and categories for the ensemble model.

Feature Score MI Category
cdrsb 0.596834 Clinical
ldeltotal 0.439072 Neuropsychological
mmse 0.423307 Clinical
faq 0.422767 Clinical
adas13 0.418954 Clinical
adasq4 0.405963 Clinical
cir 0.345453 Biomarkers
adas11 0.329069 Clinical
phs 0.282552 Biomarkers
ravlt perc forgetting 0.261960 Neuropsychological
ravlt immediate 0.236800 Neuropsychological
ravlt learning 0.190921 Neuropsychological
fdg 0.187301 Imaging
ptau 0.174670 Biomarkers
trabsor 0.173784 Clinical
ravlt forgetting 0.157009 Neuropsychological
digitscor 0.140957 Neuropsychological
hippocampus 0.133758 Imaging
apoe4 0.0 0.130713 Genetic
abeta 0.118638 Biomarkers
fusiform 0.115856 Imaging
tau 0.097753 Biomarkers
entorhinal 0.084071 Imaging
midtemp 0.079739 Imaging
tomm40 a1 0.078894 Genetic
apoe4 1.0 0.071801 Genetic
icv 0.059267 Imaging
ptmarry married 0.053313 Demographic
tomm40 a2 0.051060 Genetic
wholebrain 0.034028 Imaging
ptraccat white 0.029367 Demographic
ptmarry widowed 0.024984 Demographic
ventricles 0.023164 Imaging
ptgender female 0.021457 Demographic
ptethcat not hisp/latino 0.014322 Demographic
ptmarry never married 0.002360 Demographic
ptmarry divorced 0.001434 Demographic

A mathematical representation for the average performance in 5-fold
cross-validation can be expressed as:

E =
1

5

5∑
i=1

Ei, (5)

where E is the average performance across the folds, and Ei is the performance metric.
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Table 2. Performance metrics of various classifiers.
Classifier Mean Accuracy SD CV1 CV2 CV3 CV4 CV5

Logistic Regression 0.835486 0.038173 0.773585 0.865385 0.884615 0.826923 0.826923

Random Forest 0.724311 0.046802 0.679245 0.769231 0.788462 0.673077 0.711538

Support Vector Machine 0.853661 0.030135 0.828125 0.831169 0.888889 0.836066 0.884058

Gradient Boosting 0.770174 0.039931 0.754717 0.730769 0.846154 0.769231 0.750000

XGBoost 0.839260 0.034568 0.792453 0.884615 0.846154 0.865385 0.807692

Ensemble Classifier 0.869884 0.021199 0.830189 0.884615 0.884615 0.884615 0.865385

3 Results

3.1 Data Preprocessing

As previously mentioned, the data employed for this study is made of multiple datasets
from the ADNI database. In order to be able to work with it, the clean-up of the
data plays an important role in the implementation of the staking ensemble. After
carrying out the preprocessing, the database went from having 16345 incomplete rows,
42 columns, and five classes (LMCI, CN, AD, EMCI, SMC) to having 411 rows, 36
columns, and three classes (LMCI, CN, AD). Of those additional columns, 4 correspond
to integrating the TOMM40 PolyT Variant Data and the Desikan Lab Polygenic Hazard
Score (PHS) associated information.

3.2 Feature Selection

As a second step, a feature selection was performed on the ‘clean’ database to improve
the performance of the ML algorithm. According to the results that can be seen in
Table 1, cognitive test data (labeled as clinical) was shown to have the highest MI
scores, meaning that these features have a substantial impact on the model’s predictive
accuracy, follow up by neuropsychological data.

Conversely, demographic features demonstrated the lowest MI scores, indicating a
lesser contribution to the model’s predictions, and although these factors did contribute
to some extent, their impact was not as pronounced as that of the cognitive tests. This
result is consistent with what is reported by medical specialists, which gave a higher
weight to clinical, neuropsychological, imaging, biomarkers, and generic data.

3.3 Classification Model

After the feature selection stage, a stacked ensemble model was implemented; this
model ensured a robust prediction method by leveraging the strengths of different
machine learning algorithms. For this specific case a GBM, XGBoost, and DRF,
combined with a powerful meta-learner (GLM), optimally enhanced these base
models predictions. Table 2 shows the performance of the stacked ensemble as a
validation method a k-fold cross-validation with k = 5 was employed, obtaining an
accuracy of 86.9%.
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4 Conclusion

This study was done using the ADNI database and its multiple datasets. Two
main preprocessing steps were performed due to several data utilization problems.
Specifically, a large portion of incomplete rows needed to be eliminated, and
several string records in the protein columns needed to be replaced by their closest
numerical representation.

In the feature ranking analysis conducted on the preprocessed dataset using the
random forest algorithm, cognitive examination data emerged as the most significant
predictor for Alzheimer’s disease. This was closely followed by indicators such as the
presence of the ptau protein and volumetric measurements of the hippocampus, a region
notably affected in Alzheimer’s pathology.

The pronounced significance of the examination data can be attributed to its direct
and intrinsic nature. While various biomarkers and neuroanatomical measurements
provide valuable insights into the disease’s progression and manifestations, direct
cognitive assessments capture the immediate and functional impact of the disease on
an individual’s cognitive abilities. As such, by their very nature, these examinations are
poised to inherently possess greater diagnostic relevance than indirect predictors.

In the experimental phase, several configurations were tested. The most promising
results were obtained when all features were considered. The optimal stacking ensemble
architecture consisted of seven foundational models: three Gradient Boosting Machines
(GBM), two Extreme Gradient Boosting models (XGBoost), and two Distributed
Random Forests (DRF). Evaluated using a 5-fold cross-validation method, this model
configuration achieved an overall accuracy of 86.9%.
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